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A Galerkin finite element solution technique for the Maxwell’s equations is discussed. This 
new formulation can be viewed as a generalization of certain staggered-grid finite difference 
schemes to arbitrary meshes. It is shown that this technique is simple to implement and is 
more accurate as well as more cost effective than the standard equal-order finite element 
approach. Numerical are presented to evaluate the performance of this new element relative 
to the standard element. (PI 1990 Academic Press. Inc 

1. INTRODUCTION 

The classical approach to solve the linear Maxwell’s equations in free space is to 
use Fourier transform methods. Many useful analytical solutions have been 
obtained via this approach. However, when the domain of interest involve 
irregularly-shaped boundaries or is finite in extent or when variable dielectric 
properties are considered, analytic solutions can no longer be obtained and numeri- 
cal approaches must be employed. Over the past two decades, finite difference 
techniques have been used extensively to generate approximate solutions to the 
Maxwell’s equations. While it is well known that the finite difference approach can 
produce accurate results on rectangular or almost rectangular domains, there is dif- 
ficulty in extending this approach to more general domains. Here the typical techni- 
ques used are to either employ a “stair-stepped” approximation to the irregular 
boundary or to invoke a global (usually numerical) transformation wherein the 
original domain is mapped into a rectangle in the transformed coordinates. The for- 
mer technique is clearly a rather poor approximation to the boundary shape unless 
a very fine resolution of grid points is used and the latter results in a more com- 
plicated set of equations to be solved. 

The Galerkin finite element technique has been widely used to solve problems 
associated with irregularly-shaped domains in many engineering problems. One of 
the first applications of finite elements to electromagnetic problems was by Arlett 
et al. [ 1 ] who used this technique to calculate the modal shape of a field for a wave 
guide problem. Over the past decade, many papers and several books have been 
written concerning the use of this approach to the boundary value problems in con- 
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junction with electrostatics [2, 33. It is clear that finite elements have already been 
well established in the solution of steady-state electromagnetic problems. However, 
the extension of this technique to time domain problems has not been very extensive. 
Lynch et al. [4] have developed a finite element model based on a second-order 
wave equation to solve electromagnetic problems in the frequency domain. More 
recently, Cangellaris et al. [S] have developed a collocation method in conjunction 
with a conforming mesh for the time-domain computation of electromagnetic scat- 
tering problems. To date, most of the publications in the area of time-domain solu- 
tions of Maxwell’s equations have been based on finite difference rather than finite 
element techniques [6, 71. 

In this paper, we will present a mixed Galerkin finite element formulation of the 
Maxwell’s equations in the time domain. For convenience we will discuss details of 
the formulation only for two dimensions, however the algorithms suggested can be 
generalized to three dimensions in a straightforward manner. The Galerkin 
elements integrals are computed analytically and an explicit forward-backward 
time-integration scheme is employed for advancing the resulting set of ordinary dif- 
ferential equations in time. We will discuss the relative merits of three simple finite 
element approximations to the field variables all of which are based on variants of 
4-node bilinear elements. These are: (1) An equal-order interpolation element in 
which both the electric field (E, and Ey) and the magnetic field (HZ) are 
approximated by bilinear basis functions; (2) a mixed-interpolation element in 
which the electric field is approximated bilinearly and the magnetic field as 
piecewise constants; and (3) a mixed-interpolation element in which the electric 
field is approximated as piecewise constants and the magnetic field as bilinear func- 
tions. The latter two approximations may be viewed as finite element analogs to 
certain staggered-grid finite difference schemes. Several numerical examples will be 
presented to evaluate the accuracy of two of these three elements. 

We will also discuss the generalization of this model to solve problems involving 
material interfaces with different dielectric properties. Numerical examples will be 
presented and compared with analytical solutions. 

2. GOVERNING EQUATIONS 

We are interested in solving the equations associated with the scattering of elec- 
tromagnetic waves from arbitrarily-shaped objects. For simplicity we will focus 
attention on wave propagation within linear isotropic media. The relevant equa- 
tions are given by the Maxwell’s equations written in the form: 

aE 
& l=vxH-J, 

aH 
par= -VxE. 

58li88’2.3 

(1) 
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where, in two dimensions, the electric (E) and magnetic (H) field vectors are 
(E,, E.,,, 0) and (0, 0, Hz), respectively. The material properties of the medium are 
the permitivity E, the permeability p and the conduction current current density is 
represented by J. For generality, material properties are permitted to be spatially 
varying. 

The Eqs. (1) and (2) are solved within an irregular domain R enclosed by bound- 
ary r. In order to render the problem well-posed, appropriate external boundary 
conditions must be chosen. Generally, for a closed domain it is sufficient that 
the tangential component of the electric vector (E,) is prescribed along ZY In the 
case of metallic surfaces E, is simply set equal to zero. For open domains more 
complicated “free-space” conditions must be developed at the computational 
boundaries. Generally special treatment is also required at material interfaces. 
The details of this procedure will be discussed later in a separate section. 

3. THE FINITE ELEMENT FORMULATION 

The finite element discretization of Eqs. (1) and (2) is performed via the conven- 
tional Galerkin method. We assume the electrical and magnetic fields are 
approximated by : 

Eh = 9 E;(t) d;(x) 
,=I 

and 
NH 

Hk= 1 Hi(t) $i(x), (3) 
,=I 

where there are N, nodes for the electric field vector and N, nodes for the magnetic 
field. When the basis functions di and $, are piecewise polynomials of the same 
order, the interpolations are known as equal-order and is referred to in this paper 
as the “linear E, ” “linear H,” or ELHL formulation. In contrast, if the basis func- 
tions are of different order (typically one of the sets being one order lower than the 
other), the approximations are termed to be mixed interpolations. We suggest that 
these mixed-interpolation representations may be viewed as generalizations of 
staggered-grid discretization schemes to distorted meshes wherein one of the fields is 
defined at the nodal points while the other field is defined at the element centroids. 
The first application of mixed-interpolation finite element schemes to hyperbolic 
equations appears to be due to Williams and Zienkiewicz [8] who considered the 
one-dimensional shallow water equations. 

In this paper we focus attention on one of the simplest two-dimensional mixed- 
interpolation approximation which is given by piecewise-continuous (Co) bilinear 
functions for H in conjunction with (discontinuous) piecewise-constant functions for 
E, henceforth referred to as the “constant E, ” “linear H,” or ECHL formulation. 



MIXED FINITE ELEMENT SCHEMES 287 

Other combinations are obviously possible, such as those obtained by interchang- 
ing the approximations for E and H (referred to as the “linear E,” “constant H,” 
or ELHC formulation) and will also be discussed. We note that yet another class 
of linear elements can be developed by employing basis functions which vary 
linearly in one direction and are constant in the remaining direction within each 
element. This approximation leads to a scheme in which the variables are staggered 
and defined on the midsides of the element [9]. Because of its excellent phase 
properties, many finite difference electromagnetic models employ this particular 
arrangement of variables on rectangular meshes. As a result of some recent work 
[lo], this pattern of staggering has been shown to perform well on distorted 
meshes when a modified finite volume technique is used. For nonrectangular 
meshes containing many distorted elements, the finite volume approach appears to 
be more complicated and concomitantly more expensive than the approach 
suggested here. In this paper we will limit our discussions to the equal-order ELHL 
element and the ECHL and ELHC mixed-interpolation elements. 

Following the Galerkin procedure, a system of discretised equations can be 
obtained by premultiplying Eqs. (1) and (2) with an appropriate set of basis func- 
tions and integrating over the domain 9, giving 

I aE 
Edi at= jQ BiVxH-jQ 4iJ; i = 1, . . . . N,, (4) R 

(5) 

When either E or H is approximated as piecewise constant functions, it is 
necessary to invoke Stokes’ theorem (or integration-by-parts) to the appropriate 
terms on the right-hand side of Eq. (4) or (5). This procedure leads to the “weak” 
form of the equations, which, for the ECHL formulation is given by 

nxE)tii+j V$ixE 
R 

and for the ELHC formulation by 

s aE 
Edi -= 

R at fr (nxH)Bi-jQ VdiXH-ja dz J. (7) 

In the boundary terms on the right-hand side of Eqs. (6) and (7), n is the outer 
normal unit vector and the resulting integrals are referred to as “natural” boundary 
conditions. These boundary conditions may be implemented by evaluating the 
boundary integrals. The boundary term for the ECHL formulation can be easily 
evaluated since n x E is identically E, and is typically specified as boundary condi- 
tion. When the boundary is a perfect conductor, E, = 0, and, therefore, the integral 
in Eq. (6) simply vanishes. In contrast, the boundary term associated with the 
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ELHC formulation which involves n x H or H, is an unknown quantity; thus the 
integral cannot be evaluated directly. For the case in which E, is specified at the 
boundary, the corresponding nodal equation is omitted (being replaced by its 
specified value) and the integral term involving n x H does not need to be 
evaluated. This procedure of omitting the nodal equation and replacing the corre- 
sponding unknown with its specified value is used for all “essential” or specified 
boundary conditions. It is noteworthy that, with both the ELHC and ELHL 
formulations, E, can be imposed directly at the boundary nodes (as essential 
conditions) whereas in the case of the ECHL formulation E, can be satisfied only 
in a “weak” sense via the source term of Eq. (6). This is entirely consistent with the 
element-based approximation of E in the ECHL formulation which contrasts with 
the nodal-based approximations of the alternative formulations. 

Upon substituting the approximate solutions E and H into the appropriate sets 
of Eqs. (4) to (7) and assuming that the current density J can be interpolated as a 
sum of the 4,‘s the spatially discretized form of the partial differential equations in 
two dimensions are given symbolically by 

A,ti=Bu+AJ+F, (8) 

where the vector of nodal unknown u denotes (E,, E,,, HZ), with ti being its time 
derivative, and J is the nodal analog of (J,, J,, 0). The submatrices of A,, A, B, 
and F can be expressed in terms of the Galerkin integrals by defining: 

(9) 

with the superscript “T” denoting the transpose of a matrix. Using the above 
integral representations, the mass matrices A, and A can be written as 

The form of the matrices B and F depend on the approximations employed and 
are given (prior to imposition of essential boundary conditions) for the ELHL 
formulation by 
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(lob) 

and for the ELHC formulation by 

and lastly for the ECHL formulation by 

We note that nonhomogeneous material properties can be easily incorporated by 
assuming a piecewise constant variation over each element and assembling 
“material-weighted” element mass matrices M, and M,, e.g., M, = C, E’M;. 

In the finite element approximation, bilinear elements are represented by 
4-noded, straight-sided quadralaterals. The basis functions associated with the 
elements are given in standard texts such as Zienkiewicz [ 1 l] and will not be 
repeated here. In order to compute the element matrices of Eqs. (lo), the finite 
element integrals are usually transformed into local coordinates via isoparametric 
mapping and evaluated by Gaussian quadrature techniques. Our early attempts in 
using very efficient, but approximate, one-point quadratures to evaluate the 
Galerkin integrals failed due to problems with temporal instabilities. However, 
because the particular terms of Eq. (9) involve only products of polynomials, 
element integrals can be obtained exactly as analytic functions of the nodal 
coordinates [ 121. With this procedure element-level matrices can be easily 
calculated, on the fly, and the usual requirement of storing these matrices in 
memory (or on peripheral disks) can be avoided. This computational strategy is 
especially important for three-dimensional problems where the in-core memory of 
even the largest machines can often be exceeded. 

4. TIME-INTEGRATION SCHEME 

Various time-integration schemes can be used to advance the solutions to Eq. (8) 
in time. For efficiency reasons we chose to employ an explicit time-integration 
scheme rather than a more robust, but expensive, implicit scheme. Although it is 
well known that implicit schemes are not subjected to timestep limitations as 
exhibited by explicit schemes, the tracking of propagating wave fronts require 
rather small timesteps in order to maintain good phase accuracy. Because of this 
restriction it appears that the computationally simpler explicit schemes are more 
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suitable for this class of problems. Perhaps the most widely used explicit time- 
integration scheme is the three-time level, second-order accurate, leap-frog scheme. 
In this model we employ a variant of the leap-frog scheme which is based on a 
forward-backward procedure. The timestep procedure applied to, for example, the 
ECHL equations are given by 

E “,+ ’ = E; + M,‘(C,H: - M,J=) At, (lla) 
E;+‘= E;+M,‘(-C,H;-M,J;)At, (lib) 

H ;+‘=H;+M;‘(-C~E”,+‘+C;‘E;,+‘+F”)At. (llc) 

In the above equations, (Ila) and (llb) are forward-Euler steps for E while 
Eq. (11~) is a backward-Euler step for H,. A similar scheme has been used in the 
integration of the shallow water equations [ 131. 

It is well known that consistent mass matrices present a major difficulty in the 
efficient implementation of explicit schemes. When bilinear basis functions are used, 
A4 are banded sparse matrices and their inverses M- ’ are dense matrices which 
must be stored. In order to avoid this problem, Donea [14] developed an iterative 
method which approximate the effect of the consistent mass matrix without 
incurring the cost of a full matrix inversion. This procedure is based on the lumped 
mass matrix M, with the solution at each time step n + 1 obtained iteratively via 
the following steps: 

A4,u;,t1 =f", 

M&:, = 
IIf1 

f"-CMmMLlu(i) 3 for ia (12) 

where 

and ‘7” is the iteration number. In Eq. (12), the computation of M-i is trivial since 
it is diagonal. Two or three iterations per timestep are usually sufficient to yield 
good accuracy for most problems. 

While the full treatment of consistent mass matrix is desirable for achieving supe- 
rior phase speed properties (see, for example, Fig. l), many explicit time integration 
algorithms employ the significantly simpler, but less accurate, lumped mass 
approximation and compensate somewhat by using a finer mesh to permit higher 
resolution of the waves. This appears to be a reasonable approach especially for 
equal-order formulation where M-’ appears in the equations for each variable (see 
Eq. (11)). It is noteworthy, however, that if mixed-interpolation is used and #i is 
chosen to be piecewise-constant, the mass matrix in Eqs. (1 la) and (1 lb) is identi- 
cally diagonal. Thus computation with the fixed-formulation is distinctly simpler 
than for the equal-order formulation. Moreover, the dimensions of the C and D 
matrices in Eqs. (10~) and (10d) are somewhat smaller for the mixed case thus less 
computational effort is required to generate the right-hand side vectors of Eq. (11). 
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FIG. I. Propogation of Gaussian waveform in one dimension: (a) prescribed E at the left boundary; 
time histories of H at the right boundary; (b) ECHL solution; (c) ELHL lumped mass solution; 
(d) ELHL consistent mass solution. 

5. TREATMENT OF CURVED BOUNDARIES AND MATERIAL INTERFACES 

Finite element formulations typically employ a Cartesian coordinate system with 
the unknown degrees of freedom given by the Cartesian components of the vector 
field variables. In such a coordinate system, the constrained degrees of freedom 
(which are usually associated with prescribed boundary conditions) can be easily 
treated when boundary surfaces are aligned with the coordinate directions. If the 
boundary shapes are irregular, the usual algorithms for incorporating normal and 
tangential boundary constraints for Cartesian coordinate systems are no longer 
applicable. Furthermore, it is evident that there is difficulty in uniquely defining the 
normal direction at a node which is formed by two piecewise continuous line 
segments. For the electromagnetic problems considered here, improper choice of 
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the normal directions may lead to a numerical scheme which does not satisfy the 
relevant conservation laws. 

Engleman et al. [15] developed an algorithm for determining a consistent nor- 
mal by invoking arguments associated with the conservation of mass in incom- 
pressible flows. Following their reasoning one can obtain identical formulae by 
invoking the requirement of conservation of charge. Our implementation of the 
boundary algorithm follows closely with that of Engelman in which the consistent 
normal at node “2' is given by 

(13) 

where n,= [j (a~i/ax)2+J (a~i/ay)2]'/2 and 4, is the ith nodal basis function. The 
projections n, and n, at a node can be written analytically in terms of the 
coordinates of its nearest neighbours in the form 

n 

Y1-Y3 
n 

"'=[(x,-x3)2+(yl-y3)2]"*' 

(14) 
x3-x1 

n, = 
r2 [(Xl -x3)2 + (y, - y3)2] 1’2’ 

Once the nodal normals are determined, the nodal equations at the boundary are 
locally rotated to the normal and tangential directions. The original variables 
(E, and E,) are then transformed into E, and E, and the constraints are applied 
directly to these unknowns. This procedure has an important advantage in that the 
modifications of the nodal coefficients for the rotated variables can be performed 
entirely at the element level. Upon assembly of the global matrix the constraint 
degrees of freedom for the normal and tangential nodal components can be 
imposed in the usual manner as for the unrotated system. 

It is well known that the appropriate conditions at the interface of two adjoining 
media with different material properties is given by 

n.(D,-D,)=p,; nx(E,-E,)=O; 

n.(B,-B,)=O; nx(H,-H,)=J,, (15) 
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where D, B, pS, and J, are the displacement vector, the magnetic induction vector, 
the surface charge density and the surface current density at the interface, respec- 
tively. In the simplest setting, we assume ps and J, are zero, and the constitutive 
equations are given by D = EE and B = pH. 

For materials in which typically only the dielectric constant change across an 
interface, the normal component of the electric field (E,) is discontinuous across the 
interface and it is required that 

E,(n.E), =e2(n.E)* (16) 

with E~ and .z2 being the dielectric constants of the two materials. We note that if 
the E fields are calculated at the nodes (as for the ELHL or ELHC formulations), 
the constraint of Eq. (16) must be imposed at all interfaces nodes. In principle if 
Eq. (16) is not satisfied the conservation of surface charge may be violated. The 
implementation of such an interface constraint into a numerical model can be 
accomplished by observing that the displacement vector (D) is continuous across 
the interface. Rather than computing E, and E, at interface nodes it is straight- 
forward to, instead, employ as variables D, and E,, both of which are continuous. 
Upon calculation of D,, the corresponding values of E, on either side of the 
interface can be obtained by invoking the constitutive equations. 

It is important to note that interfacial discontinuities involving changes in 
dielectric constants are automatically incorporated, albeit in a “weak” sense, into 
the ECHL formulation since the E nodes are never located at interfaces. Thus, in 
contrast to the ELHC or ELHL formulations, constraints conditions such as given 
by Eq. (16) do not have to specifically imposed. 

6. COMPUTATIONAL CONSIDERATIONS 

From a computational viewpoint, the cost per timestep of the ELHL formulation 
is higher than that of either mixed (ECHL or ELHC) formulations for two-dimen- 
sional problems. In addition, an important simplification of the consistent mass 
matrix results when piecewise-constant basis functions are employed since the 
matrix is then diagonal. With the proposed explicit time integration procedure, the 
ECHL formulation (with all but one of the mass matrices being diagonal) is com- 
put.ationally cheaper than the ELHC formulation and, furthermore, is significantly 
cheaper than the ELHL formulation (where none of the mass matrices are 
diagonal). It is noted that this advantage in efficiency of the ECHL over the ELHC 
formulation does not carry over to three dimensions since both forms display the 
same number of diagonal and nondiagonal mass matrices. However, if lumped mass 
approximations are used for all of the mass matrices, the computational efficiencies 
of the three formulations are roughly similar, with the mixed interpolation cases 
being slightly cheaper due to the smaller dimension of the matrices. 

The element-based definition of E for ECHL has also several distinct advantages 
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over the nodal-based E formulations which we will now summarize. We noted 
earlier that material interface conditions are automatically incorporated in a weak 
sense into ECHL. Furthermore, when nonzero values of E, are prescribed along 
curved boundaries, the boundary conditions can be easily imposed via boundary 
integrals of E, (see Eq. (6)) rather than requiring local rotations of boundary nodes 
to normal and tangential coordinates as in the case of the ELHC and ELHL 
formulations. Finally, any nodal singularities of E (e.g., at corners or the origin 
for axisymmetric problems) are avoided since these cannot coincide with the E 
unknowns for the ECHL formulation which are defined at the element centroids. 

Apart from boundary condition considerations, the lumped mass approximations 
for the ECHL and the ELHC formulations generate the same spatially discretized 
form of the equations on rectangular grids. Therefore the two formulations, in 
principle, exhibit the same phase accuracy, Although the results have not been 
presented, we have observed numerically that the ECHL and ELHC solutions also 
display approximately the same order of accuracy on distorted finite element 
meshes [lo]. In terms of implementation, however, the ECHL formulation is 
generally simpler than the ELHC formulation and is therefore preferred. For this 
reason, the numerical results presented will focus attention on comparing the 
accuracy of the ELHL and ECHL formulations only. 

7. NUMERICAL EXAMPLES 

Three numerical examples are considered to compare the performance of the 
ECHL and ELHC approximations. In order to minimize the various combinations 
of consistent versus lumped matrix formulations which can be tested, we have 
chosen to employ, for the ECHL element, mass lumping on the HZ equation while 
(diagonal) consistent mass matrices are used in conjunction with the E equations. 
Thus no iteration of the mass matrix is required for the mixed formulation. In 
contrast, we used either consistent or lumped mass for all of the equations 
associated with the ELHL formulation. For convenience as well as for graphical 
purposes, all element-centered quantities are extrapolated to the nodes via an area- 
weighted averaging procedure [16] given by 

where S, and ET are the elemental areas and values, respectively, and the summa- 
tion is performed over the “m” elements which share node ‘7.” 

We begin by performing calculations on the propagation of a Gaussian-like wave 
form within a one-dimensional domain enclosed by perfect-conducting metal 
boundaries. Next we consider the two-dimensional problem of scattering of a plane 
wave from a cylinder in free space. In our final example, we present results from a 
calculation involving the propagation and scattering of a plane wave on a circular 
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interface separating media with different dielectric constants. For simplicity all 
current sources and surface charges are assumed to be zero in the example 
problems. 

7.1. Propagation of a Wave in One Dimension 

We first consider a one-dimensional problem involving the propagation of a finite 
amplitude wave within a uniform mesh. For convenience E and p are chosen to be 
unity. A Gaussian-like pulse (Fig. la) is introduced into the domain by prescribing 
a time-varying electric field at the left boundary and is given by 

(exp[-10(t-1)2]-exp(-10)}/{1-exp(-10)}; 03t32: 
E(l)= o. 

i? t ;> 2. 

At the right boundary we impose a metal (E=O) boundary condition thus 
permitting reflections to occur. A uniform mesh of 30 elements with Ax= 0.05 is 
used. The integrations are performed with a timestep of 0.01 resulting in Courant 
number of 0.2. The time variation of the magnetic field at the right boundary node 
is displayed in Fig. 1 for the ECHL, ELHL lumped mass and the ELHL consistent 
mass formulations. We note that the spatial discretization of the lumped mass 
ELHL formulation is identical to that of the form given by standard centered finite 
difference. 

The results clearly show that the ECHL approximation exhibits significantly 
higher phase accuracy (for the high wave number components of the spectrum in 
particular) than the ELHL approximation and is indistinguishable from the exact 
solution. The ECHL solution is, in fact, more accurate than the consistent mass 
ELHL solution in which some wiggles are evident. It is noteworthy that in order 
to achieve an accuracy displayed by the ECHL solution, the ELHL. calculation 
must be performed on a mesh which contains twice as many grid points. This is 
consistent with one-dimensional truncation error analysis which show that, on an 
uniform mesh, staggered schemes typically exhibit an accuracy which is similiar to 
that of an unstaggered scheme with approximately twice the grid resolution. 

7.2. Scattering of a Plane Wave on a Circular Cylinder 

The scattering of a plane electromagnetic wave from a circular cylinder in free 
space is one of the few nontrivial two-dimensional problems in which an analytical 
solution is given [ 171. For these calculations we assume a rightward-propagating 
incident wave with a waveform identical to that shown in Fig. la but with an 
amplitude of & and time scaled in nanoseconds (ns = 10P9 s). MKS units are 
used in this and in the subsequent calculation with the free space values of 
E,, = 8.85 x lo-‘* F/m2 and pu, = 1.2566 x lop6 N/A2. The effect of the plane wave is 
simulated by computing analytically the associated tangential component of the 
electric field at the surface of the cylinder and imposing that as the boundary condi- 
tion. The computational domain (only half of which is computed due to symmetry) 
consists of a uniform radial mesh of 15 by 30 elements and is shown in Fig. 2. We 
used the following boundary conditions for the problem: (i) E, = 0 at r = 1 .l: 
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FIG. 2. The computational mesh for the problem of wave-scattering over a circular cylinder with the 
locations of the observation points. 

(ii) E, = 0 at y = 0 (symmetry condition); and, (iii) on the cylinder (Y = 0.1) the 
Gaussian pulse is modelled by prescribing E, = -&{exp( - lO[‘) - 
exp(-10))cos~/{1-exp(-10)},where~={t-(x-0.1)~) 109-landeis 
the angle measured from the positive x-axis. In order to minimize the influence of 
the computational boundaries we have chosen to compute the scattered (i.e., total 
minus incident) fields over a period of time in which the solution has not been 
contaminated by reflections. Integration is performed up to a time of 5 ns with a 
timestep of 0.05 ns. 

We present in Fig. 3 the calculated time histories of the magnetic field at nodes 
A and B. Also shown are the exact solutions at these nodes. It is evident that the 
ECHL solution is significantly more accurate than the ELHL lumped mass solu- 
tion. As for the earlier one-dimensional results, the ECHL solution display a much 
smoother result than the lumped mass ELHL solution in which wiggles are present. 
The consistent mass results (not presented) exhibit an accuracy somewhat closer to 
the ECHL solution but with observably larger oscillations. Further calculations 
have shown that the ECHL accuracy is approximately equal to that of ELHL for 
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FIG. 3. Computed versus exact (E) time history solutions for the cylinder scattering problem at the 
observation points in Fig. 2; node A: (a) lumped mass ELHL; (b) ECHL; node B: (c) lumped mass 
ELHL; (d) ECHL. 

a mesh with quadruple the number of elements in the present mesh. In spite of the 
two-dimensional character of this problem, the results appear to be consistent with 
those obtained for the one-dimensional solutions. 

7.3. Propagation of a Plane Wave across a Cylindrical Material Interface 

When a plane wave impinges upon on interface in which material properties 
change, a portion of the incident wave is reflected while the remainder is trans- 
mitted through the new medium. Exact solutions are available for simple one- 
dimensional problems where a material interface separates two infinite media with 
uniform properties. In higher dimensions, however, numerical approaches are 
usually required. We consider here a two-dimensional problem in which a finite 
amplitude wave propagating within free space is launched at a cylinder with a 
dielectric constant which is different than the original medium. The wave is then 
transmitted through the cylinder finally emerging at the opposite end after 
undergoing internal reflections within the circular material interface. An analytical 
solution can be obtained for this particular problem [ 171 and is used as the 
reference for assessing the accuracy of the numerical solutions. 
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The computational domain of interest, shown in Fig. 4, consists of a semi-circular 
section with radius 0.25 m which is imbedded within a larger rectangular region. 
The finite element mesh (which represents half of the full domain due to symmetry) 
contains 992 elements and 1059 nodes. We assume that the dielectric constant 
within the circular domain has a uniform value of so/16 which contrasts with the 
free space value of .a(, outside of the cylinder. The permeability p0 is uniform within 
the entire domain. We note that the speed of the waves within the material cylinder 
is quadruple that of the incident medium. This unusual (and somewhat artificial) 
disparity in properties was chosen in order that internal reflections of the waves will 
be felt much earlier than that of the corresponding spurious reflections from exter- 
nal computational boundaries. The numerical results will, of course, be relevant 
only up to a time when the spurious reflections appear. It is noted that the large 
difference in the magnitude of the dielectric constants should tend to accentuate the 
discontinuity of the field component across the interface thus placing a demanding 
test on the effectiveness of the interfacial treatments in the numerical algorithm. 
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4 

FIG. 4. The computational domain showing the material interface (at r = 0.25) with the locations of 
the observation points. 
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The temporal profile of the indicent wave, with time scaled in IZS, is given by 

E = f&&){l-cos2nt); O<t<l, 
t 

i 0; t> 1. 

Due to lack of an effective “free-space” (non-reflective) boundary condition, we 
have taken the simplest approach by assuming that the computational boundaries 
are perfect conductors (E, = 0). We impose a symmetry condition of E, = 0 along 
the centerline (v = 0). The time integration is carried out to a time of 8 ns at a 
constant timestep of 0.01 ns. The corresponding Courant number based on the 
properties of the cylinder is approximately 0.8. 

The purpose of this numerical simulation is to compare the performances of two 
element approximations, namely, the lumped mass ELHL element in which the 
interface constraint (Eq. (16)) is specifically imposed, and, the ECHL element in 
which the material interface condition is incorporated naturally via the formulation. 
Figures 5 and 6 show the calculated time histories at nodes A (r = 0.31, 6 = 37r/4), 
B (r = 0.28, 8 = 7c/2), C (r = 0.31, % = 7c/4), and D (r = 0.28, 6 = 0) all of which are 
located in Fig. 4. The chosen nodes were in the neighborhood of the material inter- 
face in order to display minimal effect of reflections from computational 
boundaries, at least at early times. Furthermore, the nodes which are closest to the 
interface would be expected to be most sensitive to errors if interface conditions are 
improperly treated in the formulation. 

The results show that the ECHL solution is noticebly more accurate that the 
ELHL solution in reproducing both the amplitude and shape of the exact 
waveform. Also, the amount of distortion of the wave caused by the computational 
boundaries appear to be substantially less significant for the ECHL formulation as 
shown by the magnitude of the trailing oscillations at late times. In both formula- 
tions the wiggles in the solutions are caused by a combined effect of wave scattering 
from interfaces which are associated with changes in mesh resolution and also by 
reflections from the external boundaries. We note that better agreement between the 
ECHL and the exact solution can be achieved if a liner mesh is employed and the 
computational boundaries are moved further away from the circular material 
interface. Figure 7 shows snapshots of the electric field at various times during the 
ECHL simulation. At an early time of 2 ns the plane wave approached the material 
interface from the left but did not yet interact with it. After 3 ns or so the waves 
have already penetrated into the material cylinder generating both transmitted and 
reflected waves at 4 ns. During this time the waves patterns become increasingly 
complex. Finally, at 6 ns, the incident wave has exited from the right boundary of 
the cylinder and the scattered waves began to interact with both the left and the 
right computational boundaries. 

In order to assess the importance of the interface conditions, we performed a 
calculation with the ELHL element in which the interface was purposely ignored 
(i.e., Eq. (16) was not imposed at the interface nodes) and compared this with the 
ELHL solution generated with the full interface treatment. The E,, profiles (the vector 
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FIG. 5. Computed versus exact time history solutions for the circular material interface problem at 

the observation points A and B in Fig. 4. Numerical results are shown for the ELHL (top) and ECHL 
(center) formulations. 
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FIG. 7. Electric field vectors showing wave propagation through the circular material interface at 
various times. 

component which is discontinuous across the interface) for the cross-section x = 0 
at t = 4.32 ns is shown in Fig. 8. Except at the immediate vicinity of the interface, 
the two solutions agreed surprisingly well. It is interesting to note that the formulation 
which ignored the interface condition displayed a solution which approximately 
averaged the values between the closest nodes in the neighborhood of the interface. 
This result suggests, therefore, that if detailed description of the field at the interface 
is not of interest, it is probably not essential to impose specific interface constraints, 
at least for finite element formulations. In many instances the Galerkin procedure 
will, by construction, attempt to generate the best possible lit to the solution based 
on the given node distribution. 
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FIG. 8. The spatial variation of EY along x = 0 at t = 4.32 ns showing the interfacial discontinuity at 
y = 0.25. “I” denotes the lumped mass ELHL solution with full interface treatment and “NI” denotes the 
same element but with no special interface treatment. 

8. CONCLUSIONS 

We have presented a new finite element solution technique for the Maxwell’s 
equations which is based on a mixed formulation. The technique is computationally 
cost-effective and appears to exhibit, even on distorted meshes, the good accuracy 
of staggered-grid difference schemes. Moreover, an explicit time integration scheme 
can be easily implemented since the formulation simplies certain consistent mass 
matrices into diagonal forms. Of the mixed formulations discussed, the ECHL 
formulation is particularly advantageous for treatment of prescribed boundary 
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conditions and for calculations involving certain material interfaces. Finally it 
appears that the finite element procedure automatically generates an “averaged” 
solution across a material interface without the necessity of imposing special inter- 
face conditions. 
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